Log parameters and model configuration
You can define a namespace for storing any parameters or hyperparameters.
In the below examples, the parameters are stored in a namespace called parameters
. Inside that namespace, an attribute is created for each parameter.
from neptune_scale import Run
run = Run(...)
run.log_configs(
{
"parameters/learning_rate": 0.001,
"parameters/batch_size": 64,
},
)
You can find your logged parameters in the All metadata section of the run.
tip
You can display parameters in the experiments table and custom dashboards.